Nanostructured SnS with inherent anisotropic optical properties for high photoactivity.

نویسندگان

  • Malkeshkumar Patel
  • Arvind Chavda
  • Indrajit Mukhopadhyay
  • Joondong Kim
  • Abhijit Ray
چکیده

In view of the worldwide energy challenge in the 21(st) century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the potential to tap the solar energy by unlocking the functional properties at the nanoscale. Tin(ii) sulfide is a fascinating solar energy material due to its anisotropic material properties. In this manuscript, we report on exploiting the 2D structure modulated optical properties of nanocrystalline SnS thin film synthesized by chemical spray pyrolysis using ambient transport in the harvesting of solar energy. We obtained the nanostructured SnS with well-preserved dimensions and morphologies with one step processing. The work demonstrates that the intrinsically ordered SnS nanostructure on FTO coated glass can tap the incident radiation in an efficient manner. The structure-property relationship to explain the photo-response in nanocrystalline-SnS is verified experimentally and theoretically. The novel design scheme for antireflection coating along with the anisotropic properties of SnS is conceived for realizing a PEC cell. The developed PEC cell consists of a SnS photoanode which shows considerably high photocurrent density of 7 mA cm(-2) with aqueous media under AM 1.5G, 100 mW cm(-2) exposure with notably stable operation. Electrochemical impedance spectroscopy revealed that a non-ideal capacitive behavior as well as drift assisted transport across the solid-state interface is responsible for such a high photo-current density in the nanocrystalline-SnS photoanode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

The Effect of Tin Weight Fraction and Annealing Condition on Electrical and Optical Properties of ITO/TiO2 Nanostructured Film

   High transparent conductive indium tin oxide/titanium dioxide (ITO/TiO2) nanostructured thin film is prepared by sol-gel dip-coating technique. This method yielded monodisperse ITO nanoparticles with mean diameter of 12 nm. The atomic composition of the Sn within the ITO structure changed from 0-20 wt.%. Through controlled annealing temperature at 550 oC, the result...

متن کامل

Facile solution synthesis and photoelectric properties of monolithic tin(II) sulfide nanobelt arrays.

The tremendous future energy demand and environmental concerns prompt the lasting search for new materials for low-cost and high-efficiency solar cells. SnS, as a low-cost, earth-abundant, and environmentally friendly material with proper band gap and absorption coefficient, has received attention as a potential candidate for solar absorber, but it is still under-developed due to insufficient c...

متن کامل

Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films

   In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...

متن کامل

Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis.

In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2016